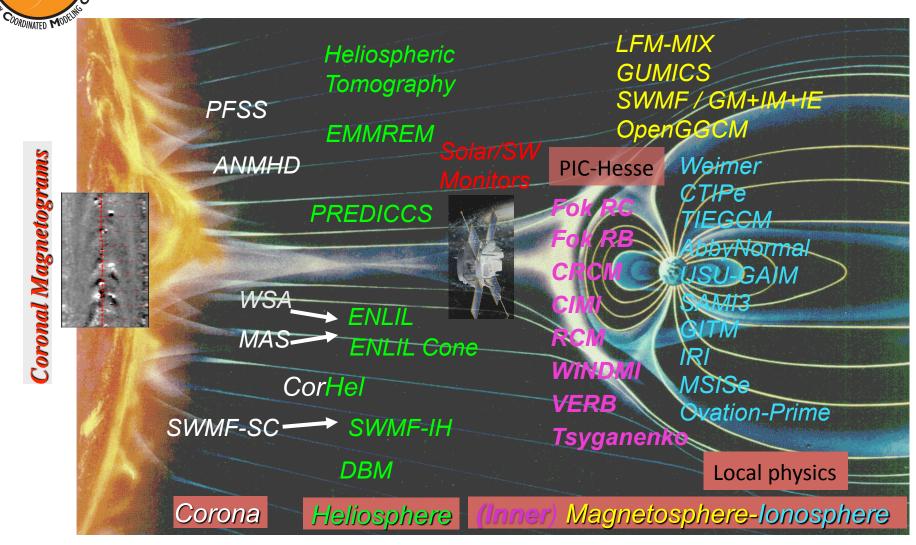
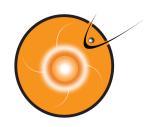


MMS support at the Community Coordinated Modeling Center (CCMC)


L. Rastaetter, M. Hesse, M. Kuznetsova, A. Glocer, CCMC team

MMS Science Working Team Meeting, 11 March 2015


http://ccmc.gsfc.nasa.gov

Mission Support for MMS: ccmc.gsfc.nasa.gov/missionsupport/#mms

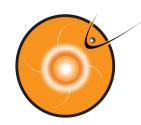
Expanding Collection of Models at the CCMC


CCMC: Making models and model combinations available for researchers and operational users.

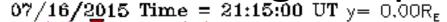
Services for MMS Mission

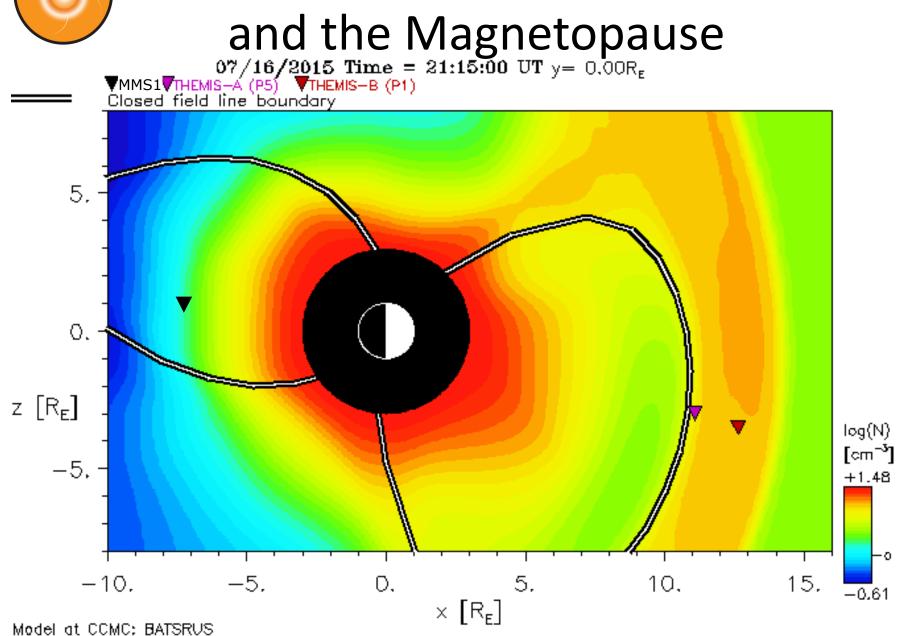
- Determine positions of MMS spacecraft in relation to magnetopause
- Detect reconnection sites in global MHD runs
- Space Weather Services (notifications, post-event analyses)
- Runs-on-Request with Particle-in-Cell models

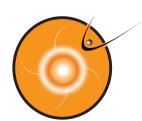
Mission Support for MMS: ccmc.gsfc.nasa.gov/missionsupport/#mms



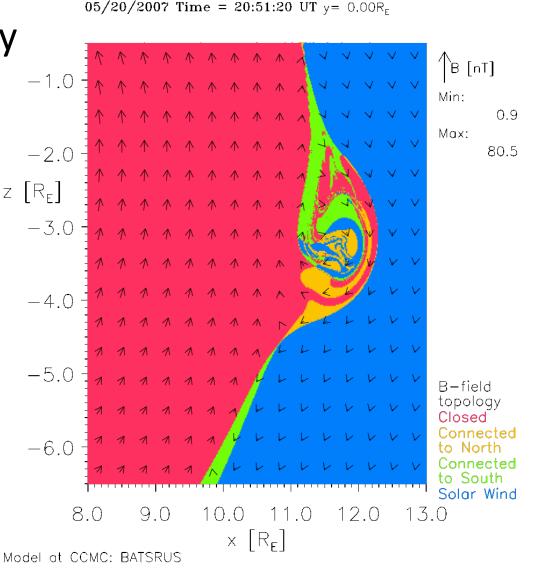
MMS Spacecraft and the Magnetopause


Satellite positions (from GSFC/SPDF/SSCWeb) now available in magnetospheric simulations.


- Analyses possible:
 - Inside/outside MP
 - Distance to MP
 - Modeled in MHD by SWMF/BATSRUS, LFM, OpenGGCM or GUMICS
 - Statistical model (Shue, ...)


New: Add satellite position to plot:		
□ Chandra □ Cluster-1 (FM5/Rumba) □ Cluster-2		
(FM6/Salsa)		
□ Cluster-3 (FM7/Samba) □ Cluster-4 (FM8/Tango)		
□ DoubleStar-1		
□ DoubleStar-2 □ Geotail □ GOES-10		
□ GOES-11 □ GOES-12 □ GOES-13		
□ IMP-8 □ LANL-02 □ LANL-89		
□ LANL-94 □ LANL-97 ☑MMS1 □ MMS2 □ MMS3		
■MMS4 ▼THEMIS-A (P5) ▼THEMIS-B (P1)		
□ THEMIS-C (P2) □ THEMIS-D (P3) □ THEMIS-E		
(P ₄)		
☐ Twins1		
Note: Satellite positions are projected onto the		
selected cut plane if within the selected plot area.		
Satellite positions may be far away from the selected cut plane.		

MMS Spacecraft

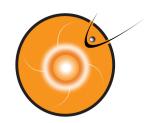


Reconnection at Magnetopause

 Magnetic topology through magnetic field line tracing


2D slices (now at z [R_E]CCMC)

 3D tracking of separators and magnetic nulls

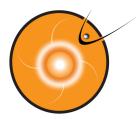


Reconnection in Global Models

Apply tool to all magnetosphere models at CCMC

Provide context to MMS observations

Space Weather Services


Mission Support for MMS:

ccmc.gsfc.nasa.gov/missionsupport/#mms

CCMC/SWRC issues notifications to NASA robotic missions:

- Current space radiation and geomagnetic activity
- Short-range activity forecasts
- Post-event analysis through Space Weather database (tracks CMEs, Solar energetic particles, geomagnetic activity)

PIC-Hesse model at CCMC

Simulation run parameters

Visualizations:

- Fields
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest
 - Electrons and Protons:
 All particles or particles from top or bottom region
 - Fly-through: ROIs along Z

Run: Michael_Hesse_021915_2

Key Word: MMS Support, 2D Asymmetric reconnection

Model Type: LP/PIC

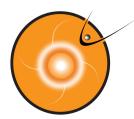
Model: PIC-Hesse, version v20150219

Initial Configuration: Harris Sheet along X with added Bx

Run parameters:

• proton/electron mass ratio: 25

• electron/proton temperature ratio: 0.2

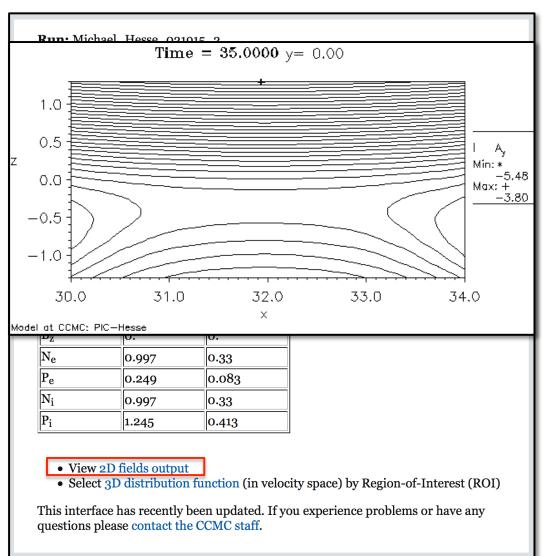

• electron cyclotron/electron plasma time ratio (ω_{pe}/ω_{ce}): 2

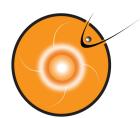
Boundary parameters (N and P averaged for each particle species):

Quantity	bottom (Z=-12.8)	top (Z=12.8)
B_{x}	-0.5	1.5
By	0.	0.
B_z	0.	0.
N _e	0.997	0.33
Pe	0.249	0.083
N _i	0.997	0.33
Pi	1.245	0.413

- View 2D fields output
- Select 3D distribution function (in velocity space) by Region-of-Interest (ROI)

This interface has recently been updated. If you experience problems or have any questions please contact the CCMC staff.

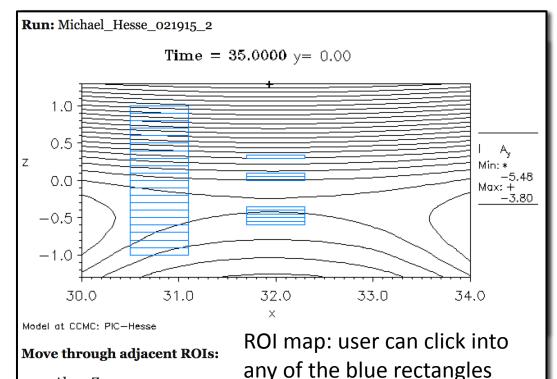



PIC-Hesse model at CCMC

Simulation run parameters

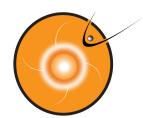
Visualizations:

- Fields
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest
 - Electrons and Protons:
 All particles or particles from top or bottom region
 - Fly-through: ROIs along Z



PIC-Hesse model at CCMC

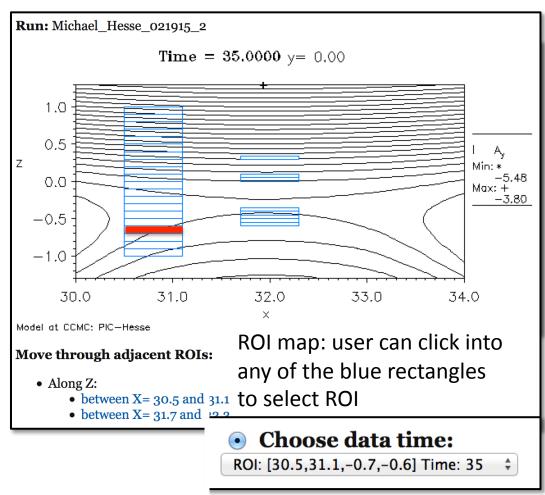
Simulation run parameters


Visualizations:

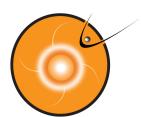
- **Fields**
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest
 - **Electrons and Protons:** All particles or particles from top or bottom region
 - Fly-through: ROIs along Z

- Along Z:
 - between X= 30.5 and 31.1 to select ROI
 - between X= 31.7 and 12.3
- - View 2D fields output
 - Select 3D distribution f nction (in velocity space) by Region-of-Interest (ROI)

This interface has recently be in updated. If you experience problems or have any questions please contact the (CMC staff.



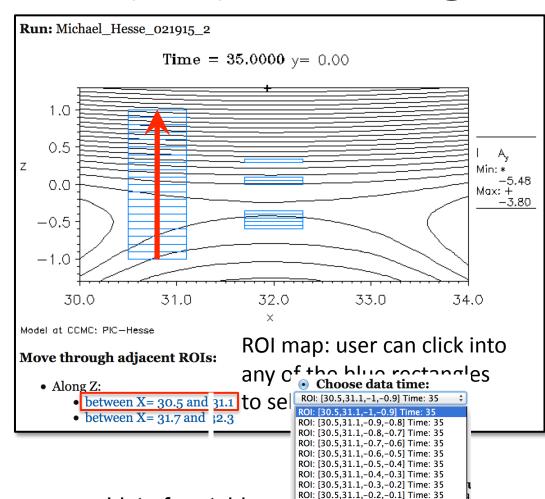
PIC-Hesse model at CCMC


Simulation run parameters

Visualizations:

- Fields
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest
 - Electrons and Protons:
 All particles or particles from top or bottom region
 - Fly-through: ROIs along Z

Selected ROI listed in visualization interface

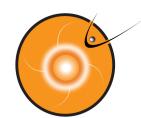


PIC-Hesse model at CCMC

Simulation run parameters

Visualizations:

- Fields
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest
 - Electrons and Protons:
 All particles or particles from top or bottom region
 - Fly-through: ROIs along Z

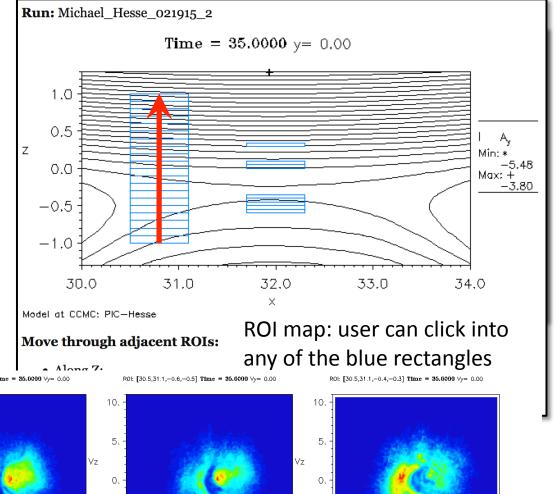

ROI: [30.5,31.1,-0.1,0] Time: 35 ROI: [30.5,31.1,0,0.1] Time: 35 ROI: [30.5,31.1,0.1,0.2] Time: 35

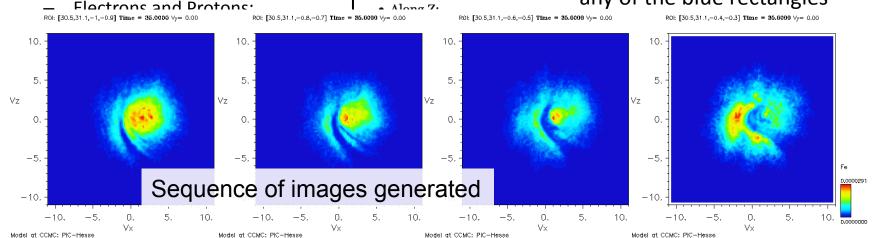
ROI: [30.5,31.1,0.2,0.3] Time: 35 ROI: [30.5,31.1,0.3,0.4] Time: 35 ROI: [30.5,31.1,0.4,0.5] Time: 35

ROI: [30.5,31.1,0.5,0.6] Time: 35 ROI: [30.5,31.1,0.6,0.7] Time: 35

ROI: [30.5,31.1,0.7,0.8] Time: 35 ROI: [30.5,31.1,0.8,0.9] Time: 35 ROI: [30.5,31.1,0.9,1] Time: 35

List of matching ROIs displayed in visualization interface




PIC-Hesse model at CCMC

Simulation run parameters

Visualizations:

- Fields
 - Scalars, vectors
- Distribution functions
 - Selection by Region-of-Interest

Future of PIC modeling at CCMC

- Add more runs (same model, other models)
 - Develop request interface (problem type, parameters)
- Visualization of fields:
 - Convert to dimensional values to match magnetopause conditions with user-submitted scaling, e.g.,
 - length L_0 =400 km,
 - density $N_0 = 0.1 \text{cm}^{-3}$,
 - magnetic field B₀=40nT.
- Visualization of distribution functions:
 - Region-of-Interest-on-Request: user input of sets of 4 corner positions
 - Fly-through with arbitrary start and end positions (satellite trajectory)
 - Spectrogram plots, pitch angle distribution (vs. spacecraft trajectory or B-field).
 Use instrument-specific parameters (e.g., energy bins, view angles)